
Page 1

CS-111 Programing Assignment 1:

OpenCV Setup and Image Filtering

Submission instructions:

Please submit your code and the PDF file in a single zip file to Canvas.

You must also submit the same PDF file to Gradescope.

BOTH submissions are required for full points.

Your work is due by 11:59 p.m. on Wednesday, the 10th of April.

Introduction:

Programming assignments for this course are designed for you to get hands on experience in

writing image processing code. The preferred programming language is C/C++ and you will use

OpenCV library for reading and writing images. You are expected to write complete, stand-alone

functions that perform the desired operations on the input images.

You are only allowed to use some OpenCV functions and you cannot replace the function you

have to develop with its built-in functions. You will be required to submit your output image

along with your function’s code.

The first part of this assignment goes through the steps to set up your workspace for your

programming assignments. This assignment only provides guidance for Visual Studio on

Windows. If you are using other operating systems or you prefer other IDEs, please refer to

online guidance for setting up your workspace. The second part of the assignment concerns

image filtering.

OpenCV Installation:

I. Installing Visual Studio

a. Download free Visual Studio from https://www.visualstudio.com/free-

developer-offers/ and download the Visual Studio Community.

b. Install Visual Studio and when Visual Studio Installer is up, choose

only “Desktop Development with C++” and install.

https://www.visualstudio.com/free-developer-offers/
https://www.visualstudio.com/free-developer-offers/
https://www.visualstudio.com/free-developer-offers/
https://www.visualstudio.com/free-developer-offers/

Page 2

c. Once Visual Studio is installed, create a new “Windows Console

Application” project.

II. Installing OpenCV

a. Download “Win Pack” from the latest released OpenCV version (Here

3.4.1) from https://opencv.org/releases.html

b. Run the executable and unzip the content in a specific location on

your computer (e.g. C:\)

c. Go to your Visual Studio project (that you created in the last step)

and change the following properties:

https://opencv.org/releases.html
https://opencv.org/releases.html

Page 3

i. In “Configuration Properties -> C/C++ -> General -> Additional Include Directories”

add “<Your OpenCV location>\opencv\build\include” (e.g. “C:\opencv\build\include”)

ii. In “Configuration Properties -> Linker -> General -> Additional Library Directories”

add “<Your OpenCV location>\opencv\build\x64\vc15\lib” (e.g. “C:\opencv\build\

x64\vc15\lib”)

iii. In “Configuration Properties -> Linker -> Input -> Additional Dependencies” add

“opencv_world341d.lib” for “Debug” configuration and “opencv_world341.lib” for

“Release” configuration.

iv. Add the “<Your OpenCV location>\opencv\build\x64\vc15\bin” (e.g. “C:\opencv\build\

x64\vc15\bin”) to your system “Environmental Variables” PATH. Then, restart your

machine to apply the changes to the system PATH.

III. Start manipulating images

a. Now your project is ready to use OpenCV. Normally, images are color

images, however, in this course we also will work on gray images (no

color) for simplicity. An image is like a big matrix of the size of the

image where each pixel has value that specifies the color or

brightness of that pixel. Normally color images are RGB, which means

each pixel has red, green and blue values. These values can have

different ranges but the normal range for ordinary images are from 0

to 255, which means one byte per channel.

b. In the following code snippet, you will see how to read a color image,

convert it to a gray image and save the new image. To use OpenCV

commands in code, you need to include <opencv2\opencv.hpp>

which contains OpenCV headers. The basic data structure in OpenCV

is Mat, which is a matrix that can hold an image. Using the functions

imread and imwrite, you can read and write images, respectively.

Each pixel value can be read as OpenCV data structures Vec3b (for

color images) or uchar (for grayscale images). You can create an

empty Mat by specifying the size and the depth of each pixel. Here

we use CV_8UC1 for gray images and CV_8UC3 for color images. If you

have any confusion on how to use OpenCV or if you want to learn

more about its features, you can read its very well defined

documentations at https://docs.opencv.org/3.4.1/

#include "stdafx.h"

#include <opencv2\opencv.hpp>

using namespace std;

using namespace cv;

int main()

{

 Mat I = imread("alberta.jpg", CV_LOAD_IMAGE_COLOR);
 Mat J(I.rows, I.cols, CV_8UC1);

https://docs.opencv.org/3.4.1/
https://docs.opencv.org/3.4.1/

Page 4

 for (int i = 0; i < I.rows; i++) {

 for (int j = 0; j < I.cols; j++) {

 Vec3b pixel = I.at<Vec3b>(i, j);

 int b = pixel[0];

 int g = pixel[1];

 int r = pixel[2];

 J.at<uchar>(i, j) = uchar((b + g + r) / 3);

 }

 }

 imwrite("alberta2.jpg", J);

 return 0;

}

c. One simple way to convert a color image to a gray image is taking

average of the each red, green and blue channels, as you can see in

the above code. However, our eyes are more sensitive to some colors

than the others. According to Rec.ITU-R BT.601-7 standard, the

following formula should be used to correctly convert a color image to

a gray image:

0.2990 * R + 0.5870 * G + 0.1140 * B

 Modify the above code snippet to correctly convert the

RGB image to gray image and apply it to all the color input

images. Submit your code with the result images.

d. To learn more about manipulating color images, please read a color

image and switch the color channels with each other.

 Modify the above code snippet to replace the green with

blue, red with green, and blue with red channels. Apply

changes to all the color input images. Submit all result images

with your code.

Image Filtering

IV. Filtering is a core operation in image processing. It has wide variety of

applications ranging from video processing to computer vision. It is

important to get familiar with implementing image filtering. In this

section, you will learn how to apply a very simple filter on input images.

 A box filter is a square filter that averages all of the image pixels covered

by the filter. The output (i.e. filtered) pixel corresponds to the center

Page 5

pixel of the input pixels covered by the filter kernel. The filter kernel for

a 3x3 box filter is:

 For each pixel in the input image, this filter adds that pixel’s value and

those of its eight neighboring pixels and calculates their average. The

output pixel value will be the rounded average value. You should write a

function with the following signature:

Mat BoxFilterGray3(Mat I);

 which applies the above filter on all input gray images and returns the

result. Read the input images as gray by calling the flag

CV_LOAD_IMAGE_GRAYSCALE and then use these input images.

 Implement the above function and apply the filter on all

of the input images. Submit output images along with the

code.

